
Fall 06 
The Standard Form of a Differential 
Equation 

Format required to solve a differential equation or a system of differential equations using one of the 
command-line differential equation solvers such as  
 
rkfixed, Rkadapt, Radau, Stiffb, Stiffr or Bulstoer.  
 
 
 

For a numerical routine to solve a differential equation (DE), we must somehow pass the differential 
equation as an argument to the solver routine. A standard form for all DEs will allow us to do this. 

  Basic idea:  get rid of any second, third, fourth, etc. derivatives that appear, leaving only first derivatives. 

Example 1
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This DE contains a second derivative. How do we write a second derivative as a first derivative?  A second 
derivative is a first derivative of a first derivative.  
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Step 1: STANDARDIZATION  
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 Let's define two functions y0(x) and y1(x) as and y0 x( ) y x( ) 
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3 y1 x( )⋅+ 5 y0 x( )⋅− 4x5 Then this differential equation can be written as 

This DE contains 2 functions instead of one, but there is a strong relationship between these two functions 
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So, the original DE is now a system of two DEs, 
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The convention is to write these equations with the derivatives alone on the left-hand side. 
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This is the first step in the standardization process.  
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Step 2: DEFINE  A SINGLE FUNCTION FOR THE NUMERICAL SOLVER
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and We have two functions of x, y0 x( ) y1 x( ) 
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:=  These 2 functions y0 and y1 allow us to define a single function D

which specifies for each vector, the corresponding vector of derivative values. 

This function D is the essential component to be used in solving a differential equation 
numerically. When constructing this function, be sure to use the array subscript to indicate 
the order of the derivative.  

use of rkfixed to solve differential equations:  rkfixed(ic, x1, x2, npoints, D)
 
This function returns a matrix in which the first column contains the points at which the ODE solution 
is evaluated and the remaining columns contains the corresponding values of the ODE solution(s) and 
its first n-1 derivatives. A fourth-order Runge-Kutta method is used. 
 
• ic is a vector of n initial values or a single initial value. 
• x1, x2 are endpoints of the interval on which the solution to differential equations will be evaluated.  
 Initial values in y are the values at x1. 
• npoints is the number of points beyond the initial point at which the solution is to be approximated.  
 This controls the number of rows (1 + npoints) in the matrix returned by rkfixed. 
• D is an n-element vector-valued function containing first derivatives of unknown functions. 
When using this function you will better off by not including the units.  Units can always be added 
after the calculations are done.  
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:=  x1 0:=  x2 5:=  npoints 100:=  Initial Conditions 

Q rkfixed ic x1, x2, npoints, D,( ):=  
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The idea is to change the n-th order ODE into a system of n 
coupled first-order differential equations   

Systems of Differential Equations 
Example 2 

It may be that you are solving a system of equations rather than a single differential equation. Consider the 
following system 
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y0 x( ) u x( ) y1 x( ) v x( ) 
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In this case, we have defined functions so that the even indices correspond to the unknown function u and it
derivatives, while the odd indices correspond to v. 

Now that the derivative vector D is set, we'll solve the second-order system using Rkadapt.   

Rkadapt takes the following arguments: 

Rkadapt(ic, start, end, npts, D) 
 ic - vector of initial conditions.  Scalar for a first-order DE. 
 start, end - endpoints of the solution interval 
 npts - number of approximating points past the initial condition.  The result will be a matrix 
containing npts + 1 rows  
D - the derivative vector 
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 Initial condition vector 
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Vector-valued function 
containing the derivatives of the 
unknown functions 



 
Z Rkadapt ic 0, 1, 200, D,( ):=  

Rkadapt returns a vector of data where the first column contains the values of the independent variable.  
The remaining columns contain the function and derivatives evaluated at the corresponding values of the 
independent variable.  For a system, the columns are returned in the same order in which the initial 
conditions are entered. 
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0 1.5 1 1.5
-35·10 1.508 1.005 1.51

0.01 1.515 1.01 1.52
0.015 1.523 1.016 1.53
0.02 1.53 1.021 1.54

0.025 1.538 1.027 1.55
0.03 1.546 1.033 1.561

0.035 1.554 1.039 1.571
0.04 1.562 1.046 1.581

0.045 1.57 1.052 1.591
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